Tokyo Institute of Technology School of Materials and Chemical Technology Kumai-Muraishi laboratory

Solidification manner of Al-Cu / pure Al clad strips fabricated by vertical-type tandem twin-roll casting

- EBSD (Crystal grain orientation analysis)

Results and discussion

<u>OM observation</u> (anodized)

- **Clear interface** between the core and the skin layers
- Skin grain size: quite large (some of them are over few hundreds µm)

SEM-BEI observation

- grain boundaries can be seen by distribution of white particles such as precipitates
- no grain boundaries can be seen "the large width grain"
- large grains whose widths are over 100µm can be seen (the same result as the OM observation)

EPMA elemental linear analysis

	Concentration of Cu (at%)				
0	1	2	3	4	

EBSD crystal grain orientation analysis

■ <u>Core single layer strip</u>

Near surface: **Fine chill grains**

Core

Skin

• Clear columnar grains

- diffusion of Cu and Al is observed
- the **diffusion length** across the interface is about <u>20µm</u>

Too long diffusion length when only solid state diffusion is considered

Surface of the core is thought to be remolten during the casting

"the large width grain" has the same orientation as the skin grain next to

Because the core layer is heated by the skin melt, re-melting and grain growth happen. As a result, *"the large width grain"* is formed near the surface of the core layer.

Summary and Future work

Because of heat transfer from the skin melt to the core layer at the upper point of the 2nd roll gap, re-melting and grain growth occurred around

References

- R.Nakamura, T.Yamabayashi, T.Haga, H.Watari, S.Kumai, Journal of Solid Mechanics and Materials Engineering, 5 (2011) 1029-1041.

surface of the core layer. • Further discussion is needed about how solidification progress after the surface of the core is re-molten during the casting.

2) R.Nakamura, T.Haga, S.Kumai, Proceedings of the 13th International Conference of Aluminium Alloys (ICAA13), (2012) 1463-1467.

3) Thaddeus B. Massalski, Binary Alloy Phase Diagrams Volume1, (1986) 142.

