INTRODUCTION

Vertical type high speed twin roll casting

- Molten metal
- Nozzle
- Spraying
- Roll

Application: car inner panel

Problem of Al-Mg strip

- Al-Mg alloy has high heat crack susceptibility
 - Many cracks & fractures even in twin roll casting
- Periodical marks on strip surface
 - Muddy zone has many surface cracks unerasable by rolling

OBJECTIVE

- What are periodical marks?
 - Microstructural observation with SEM/OM
 - Chemical analysis with EPMA

- How are periodical marks formed?
 - Casting with differently shaped nozzle
 - Detecting melt temperature at nozzle tip

EXPERIMENTAL PROCEDURE

Sample: Al-Mg alloy

- Casting condition
 - Separating force: 11kN
 - Roll speed: 60m/min
 - Solidification length: 100mm
 - Initial roll gap: 1mm

- Microstructural analysis
 - Surface: SEM-SEI, EPMA
 - Cross-section: OM etched by Week’s reagent, Keller’s reagent

- Solidification shell
 - High Mg & crack along grain boundary to surface
 - Inverse segregation

- Globular grain
 - Thinner solidification shell
 - Lower cooling rate

RESULTS & DISCUSSIONS

What are periodical marks?

- Muddy zone
 - High Mg & crack along grain boundary to surface
 - Inverse segregation

- Shiny zone
 - Lower cooling rate
 - Residual liquid was squeezed to surface

- Muddy zone
 - Higher cooling rate
 - No residual liquid remained

How are periodical marks formed?

- Melt oscillation at nozzle tip causes periodical change of cooling rate

CONCLUSIONS

- Al-Mg alloy (AC7A) strip can be fabricated by vertical type high speed twin roll casting
- Problem: Periodical marks on the strip “Muddy zone” has many cracks indelible even after rolling
- Periodical marks: Lower cooling rate
 - Residual liquid was squeezed toward surface
 - Muddy zone
- Formation of periodical marks: Periodical melt oscillation at the nozzle tips
 - Periodical change of cooling rate